Moment based weighted residual method - New numerical tool for a nonlinear multicomponent chromatographic general rate model
نویسندگان
چکیده
Aalto University, P.O. Box 11000, FI-00076 Aalto www.aalto.fi Author Zheng Liu Name of the doctoral dissertation MODELING OF MASS TRANSFER AND REACTIONS WITH THE MOMENT METHOD Publisher School of Chemical Technology Unit Department of Biotechnology and Chemical Technology Series Aalto University publication series DOCTORAL DISSERTATIONS 5/2015 Field of research Chemical Engineering Manuscript submitted 10 September 2014 Date of the defence 27 February 2015 Permission to publish granted (date) 18 November 2014 Language English Monograph Article dissertation (summary + original articles) Abstract In chemical engineering field, mass transfer and reaction process models are needed in many stages of process research and design. These models usually consist of systems of partial differential equations. The focus of this work is to study the moment method as a numerical tool to solve different mass transfer and reaction models, which can be utilized to simulate a number of chemical engineering processes e.g. chromatography, adsorption, extraction etc. The implementation procedures, the features of the moment method are introduced with different application cases in this work. The moment transformation procedure, as the key step of the moment method is discussed in great detail when the moment method is applied to solve the chromatographic model. The important features of the moment method revealed in this work include: 1) Similar with other higher order methods, the moment method reaches desired accuracy with decreased number of variables and reduced computational load; 2) The moment method predicts the chromatographic effluent curve moments with good accuracy, because the moment method is to minimize the errors in the column profile moments; 3) Based on the moment method, the spatial PDE solution inherently conserves mass if 0th order moment is included into the set of equations. Different mass transfer and reaction processes are modeled in this work. From modeling point of view, these models are highly similar to each other except some minor details e.g. boundary conditions. This characteristic naturally is beneficial for the implementation of modeling tasks.In chemical engineering field, mass transfer and reaction process models are needed in many stages of process research and design. These models usually consist of systems of partial differential equations. The focus of this work is to study the moment method as a numerical tool to solve different mass transfer and reaction models, which can be utilized to simulate a number of chemical engineering processes e.g. chromatography, adsorption, extraction etc. The implementation procedures, the features of the moment method are introduced with different application cases in this work. The moment transformation procedure, as the key step of the moment method is discussed in great detail when the moment method is applied to solve the chromatographic model. The important features of the moment method revealed in this work include: 1) Similar with other higher order methods, the moment method reaches desired accuracy with decreased number of variables and reduced computational load; 2) The moment method predicts the chromatographic effluent curve moments with good accuracy, because the moment method is to minimize the errors in the column profile moments; 3) Based on the moment method, the spatial PDE solution inherently conserves mass if 0th order moment is included into the set of equations. Different mass transfer and reaction processes are modeled in this work. From modeling point of view, these models are highly similar to each other except some minor details e.g. boundary conditions. This characteristic naturally is beneficial for the implementation of modeling tasks.
منابع مشابه
A Theoretical Study of Multicomponent Radial Flow Chromatography
A theoretical study of radial flow chromatography was carried out based on a general nonlinear multicomponent rate model which considers radial dispersion. external mass transfer, intraparticle diffusion. and nonlinear multicomponent isotherms. Radial dispersion and mass transfer coefficients were treated as variables which are dependent on the radial coordinate of the radial flow column. The m...
متن کاملNumerical Solution of Seismic Wave Propagation Equation in Uniform Soil on Bed Rock with Weighted Residual Method
To evaluate the earth seismic response due to earthquake effects, ground response analyses are used to predict ground surface motions for development of design response spectra, to compute dynamic stresses and strains for evaluation of liquefaction hazards, and to determine the earthquake induced forces that can lead to instability of earth and earth-retaining structures. Most of the analytical...
متن کاملMathematical modeling of a fixed bed chromatographic reactor for Fischer Tropsch synthesis
In this research, Fischer Tropsch synthesis (FTS) has been modeled in the fixed bed chromatographic reactor for the first time by applying a rather complex dispersed plug flow model for fluid phase and linear driving force (LDF) model for adsorbent. Model equations are dynamic, multi-component, non-linear and heterogeneous including reaction and adsorption simultaneously Complex kinetics fo...
متن کاملA Super - Element Based on Finite Element Method for Latticed Columns Computational Aspect and Numerical Results
This paper presents a new super-element with twelve degrees of freedom for latticed columns. This elements is developed such that it behaves, with an acceptable approximation, in the same manner as a reference model does. The reference model is constructed by using many Solid elements. The cross section area, moments of inertia, shear coefficient and torsoinal rigidity of the developed new elem...
متن کاملA Super - Element Based on Finite Element Method for Latticed Columns Computational Aspect and Numerical Results
This paper presents a new super-element with twelve degrees of freedom for latticed columns. This elements is developed such that it behaves, with an acceptable approximation, in the same manner as a reference model does. The reference model is constructed by using many Solid elements. The cross section area, moments of inertia, shear coefficient and torsoinal rigidity of the developed new elem...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Computers & Chemical Engineering
دوره 53 شماره
صفحات -
تاریخ انتشار 2013